Enumerating the Nash equilibria of rank 1-games

نویسنده

  • Thorsten Theobald
چکیده

A bimatrix game (A, B) is called a game of rank k if the rank of the matrix A + B is at most k. We consider the problem of enumerating the Nash equilibria in (non-degenerate) games of rank 1. In particular, we show that even for games of rank 1 not all equilibria can be reached by a Lemke– Howson path and present a parametric simplex-type algorithm for enumerating all Nash equilibria of a non-degenerate game of rank 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-1 Games With Exponentially Many Nash Equilibria

The rank of a bimatrix game (A,B) is the rank of the matrix A + B. We give a construction of rank-1 games with exponentially many equilibria, which answers an open problem by Kannan and Theobald (2010).

متن کامل

ar X iv : 1 21 1 . 24 05 v 1 [ cs . G T ] 1 1 N ov 2 01 2 Rank - 1 Games With Exponentially Many Nash Equilibria

The rank of a bimatrix game (A,B) is the rank of the matrix A + B. We give a construction of rank-1 games with exponentially many equilibria, which answers an open problem by Kannan and Theobald (2010).

متن کامل

Nash Equilibrium Computation in Various Games

Non-cooperative Game Theory provides a framework to analyze the strategic interactions of selfish agents in any given organization. In a pioneering work, John Nash (1951) [49] proved that in any such (finite) organization, there exists a steady state where no agent benefits by unilateral deviation, henceforth called Nash equilibrium (NE). Nash equilibrium is perhaps the most well known and well...

متن کامل

Equilibrium Computation for Extensive Games

This thesis studies equilibrium computation algorithms for extensive games. We focus on the enumeration of Nash equilibria and on the computation of an extensive form correlated equilibrium. The contribution of this thesis consists of two parts. First, we study an algorithm for enumerating all Nash equilibria of a two-player extensive game. This algorithm is based on the sequence form descripti...

متن کامل

Settling Some Open Problems on 2-Player Symmetric Nash Equilibria

Over the years, researchers have studied the complexity of several decision versions of Nash equilibrium in (symmetric) two-player games (bimatrix games). To the best of our knowledge, the last remaining open problem of this sort is the following; it was stated by Papadimitriou in 2007: find a non-symmetric Nash equilibrium (NE) in a symmetric game. We show that this problem is NP-complete and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0709.1263  شماره 

صفحات  -

تاریخ انتشار 2007